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Abstract

We design a numerical algorithm for wave simulation in anelastic media in the presence of free surface, which can be

used to model seismic waves at the Earth�s surface and ultrasonic waves in heterogeneous materials. The stress–strain

relation is based on the Kelvin–Voigt mechanical model, which has the advantage of not requiring additional field

variables. The model requires two anelastic parameters and twice the spatial derivatives of the lossless case. The high-

frequency components of the wave field are more attenuated than the low-frequency components, with the attenuation

factors being approximately proportional to the square of the frequency. The modeling simulates 3-D waves by using the

Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respec-

tively. We stretch the mesh in the vertical direction to increase the minimum grid spacing and reduce the computational

cost. Instabilities of theChebyshev differential operator due to the implementation of the free-surface boundary conditions

are solved with a characteristic approach, where the characteristic variables are evaluated at the source central frequency.

The results of themodeling are verified by comparisons to the analytical solutions for Lamb�s problem and propagation in

unbounded homogeneous media. Examples illustrating the propagation of Rayleigh and Love waves are presented.
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1. Introduction

Wave modeling is a valuable tool for seismic interpretation and an essential part of inversion algorithms.
Problems regarding environmental geophysics, seismic exploration, foundation engineering, earthquake

seismology and non-destructive testing (NDT) of materials require the use of full-wave three-dimensional

modeling methods [2,18,27,36]. In particular, it is important to model the surface waves (Rayleigh and Love

waves) and record the three components of the wave field. Moreover, the unconsolidated nature of the

shallow layers in many cases requires an anelastic stress–strain relation to model the dissipation of the wave

field. An efficient and highly accurate technique is full-wave modeling by using pseudospectral methods

[6,7,12,20].
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The calculation of three-dimensional synthetic seismograms by using pseudospectral differential oper-

ators has been introduced by Reshef et al. [35], who consider a lossless medium and model the free surface

by the so-called ‘‘zero-padding’’ method. This approach requires to include a wide zone with zero P- and
S-wave velocities above the upper surface of the model. The spatial derivatives along the three spatial

dimensions are computed with the Fourier method. Generalizations of this algorithm to the elastic-

anisotropic, viscoelastic-isotropic and viscoelastic-anisotropic cases are, respectively, given in Carcione

et al. [14], Carcione [9] and Carcione [11]. However, the performance of the zero-padding method to model

surface waves is not optimal, mainly when source and receiver are near the surface [34]. To overcome this

problem, Kosloff et al. [24] and Tessmer and Kosloff [37] use the Chebyshev method to compute the de-

rivatives along the vertical direction (they solve the elastic-isotropic wave equation). Unlike the Fourier

method, the Chebyshev method is not periodic and allows for the incorporation of boundary conditions by
using characteristic variables, in particular, free-surface conditions at the surface and non-reflecting con-

ditions at the bottom of the mesh.

All the modeling algorithms mentioned above solve the wave equation in the space–time domain, where

the incorporation of anelasticity requires the use of additional variables, called ‘‘memory variables’’ [12].

Generally, this approach is based on the use of the generalized Zener model [12] or the generalized Maxwell

model [17]. Use of memory variables can be expensive in three dimensions, since the Zener model requires

six variables for each relaxation mechanism [12]. A model which does not requires memory variables is the

Kelvin–Voigt mechanical model [5,12]. We use this model to describe attenuation, because its implemen-
tation is simple and only requires the calculations of additional spatial derivatives and the use of two

anelastic parameters compared to four parameters when using the Zener model. For instance, consider that

the model is discretized in a cubic mesh with 81 grid points along each spatial direction. The number of

unknown field variables using the velocity–stress formulation is nine (three particle-velocity components

and six stress components). The Zener model requires six additional arrays to describe attenuation, and six

arrays for the material properties (two Lam�e constants and four relaxation times). Then, the total RAM

storage occupied by the Zener model is 21� 813, i.e., more than 11 Mwords. On the other hand, the

Kelvin–Voigt model requires nine arrays for the field variables and four arrays for the material properties,
implying a computer storage of less than 7 Mwords. Therefore, the saving in storage is more than 35%. The

drawback is that the Kelvin–Voigt model requires the calculation of nine additional spatial derivatives at

each time step, compared to the Zener model. However, the saving in computer storage can be significant

when modeling general attenuation laws. In this case, the Zener model requires several elements, with the

consequent increase in memory-variable storage. Note that the Zener model describes a single attenuation

peak, while the Kelvin–Voigt dissipation factor is linear with frequency. Another feature compared to the

Zener model is that the phase velocity of the waves tends to 1 at the high-frequency limit, but this is not a

major problem when using band-limited source functions. The Kelvin–Voigt law can be used to model
scattering attenuation or loss due to interlayer flow at low frequencies [22]. General attenuation curves can

be described by using several elements [5,32].

The wave equation combines the equation of momentum conservation with the constitutive relations for

isotropic and anelastic media based on the Kelvin–Voigt model. The velocity–stress formulation allows the

calculation of the particle velocity and stress components simultaneously.
2. Equation of motion

The three-dimensional equations of momentum conservation can be expressed as

q€ui ¼
orij

oxj
þ fi; ð1Þ
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where q is the density, ui are the displacement components, rij denote the stress components, and fj are the
body forces. A dot above a variable denotes time differentiation and the Einstein convention for repeated

indices is used.
The stress–strain relations for a Kelvin–Voigt solid are a simple generalization of those for one-

dimensional media [12]. They are

rij ¼ ðkhþ k0 _hÞdij þ 2l�ij þ 2l0 _�ij; ð2Þ

where k and l are the Lam�e constants, k0 and l0 are the corresponding anelastic parameters,

�ij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
ð3Þ

are the strain components,

h ¼ oui
oxi

ð4Þ

and dij is Kronecker�s delta.
3. Frequency-domain analysis

In the frequency domain, Eq. (2) can be written as

rij ¼ Khdij þ 2R�ij; ð5Þ

where

K ¼ kþ ixk0 and R ¼ lþ ixl0 ð6Þ

are the complex Lam�e moduli and x is the angular frequency. Use of the correspondence principle [12]

allows the calculation of the phase velocity and quality factor versus frequency. They are given by [12]

vp ¼ Re
1

v

� �� ��1

ð7Þ

and

Q ¼ Re ðv2Þ
Im ðv2Þ ; ð8Þ

where v is either the P-wave complex velocity or the S-wave complex velocity, given by

vðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ 2R

q

s
and vðSÞ ¼

ffiffiffiffi
R
q

s
; ð9Þ

respectively, and Re and Im take real and imaginary parts. The phase velocities of the P and S waves tend toffiffiffiffiffiffiffiffiffi
E=q

p
and

ffiffiffiffiffiffiffiffi
l=q

p
for x ! 0, and to 1 for x ! 1, where E ¼ kþ 2l. The P- and S-wave quality factors

are simply

QP ¼ E
xE0 and QS ¼

l
xl0 ; ð10Þ
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where E0 ¼ k0 þ 2l0. The attenuation factor is given by [12]

a ¼ x
vp

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p
� Q�; ð11Þ

where vp and Q are the phase velocity and quality factor of the P wave or S wave. For low-loss media (Q �
1), Eq. (11) becomes

aðPÞ ¼ x2E0

2Evp
and aðSÞ ¼ x2l0

2lvp
; ð12Þ

where Eqs. (10) have been used. Then, the attenuation factor is approximately proportional to the square of

the frequency if the variation of the phase velocity is small over the range of frequencies of the signal (see

Section 6).

The anelastic parameters can be obtained from the quality factors at a given frequency, say, the central

frequency of the source, x0. We obtain

k0 ¼ 1

x0

E
QP0

�
� 2l
QS0

�
and l0 ¼ l

x0QS0

; ð13Þ

where QP0 and QS0 are the quality factors at x ¼ x0, and E and l are the moduli at x¼ 0.

The moduli can be obtained from the P- and S-wave phase velocities at x ¼ x0, vp0ðPÞ and vp0ðSÞ,
respectively. Using Eqs. (6), (7), (9) and (10) gives

E ¼ qv2p0ðPÞgðQP0Þ and l ¼ qv2p0ðSÞgðQS0Þ; ð14Þ

where

gðaÞ ¼ 1

2
ð1þ a�2Þ�1=2½1þ ð1þ a�2Þ�1=2�: ð15Þ

Note that gðaÞ ! 1 when a ! 1. Hence, the input properties to the modeling program are q, vp0ðPÞ, vp0ðSÞ,
QP0 and QS0.
4. Velocity–stress formulation

Introducing the particle-velocity components, vi ¼ _ui, the equations of momentum conservation (1)

become

_vi ¼
1

q
orij

oxj

�
þ fi

�
: ð16Þ

Using Eqs. (3) and (4), the time derivative of the stress–strain relations (2) become

_rij ¼ k
ovi
oxi

 
þ k0

o_vi
oxi

!
dij þ l

ovi
oxj

�
þ ovj

oxi

�
þ l0 o _vi

oxj

 
þ o _vj

oxi

!
: ð17Þ
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Substituting (16) into (17) yields

_rij ¼ k
ovi
oxi

dij þ k0
o

oxi

1

q
orij

oxj

��
þ fi

��
dij þ l

ovi
oxj

�
þ ovj

oxi

�

þ l0 o

oxj

1

q
orim

oxm

��
þ fi

�
þ o

oxi

1

q
orjm

oxm

�
þ fj

��
: ð18Þ

Let us express the velocity–stress formulation in explicit form. Define the quantities

Px ¼
1

q
orxx

ox

�
þ orxy

oy
þ orxz

oz
þ fx

�
;

Py ¼
1

q
orxy

ox

�
þ oryy

oy
þ oryz

oz
þ fy

�
;

Pz ¼
1

q
orxz

ox

�
þ oryz

oy
þ orzz

oz
þ fz

�
;

ð19Þ
w ¼ oPx

ox
þ oPy

oy
þ oPz

oz
ð20Þ

and

# ¼ _h ¼ ovx
ox

þ ovy
oy

þ ovz
oz

: ð21Þ

Then, Eqs. (16) and (18) can be written in components as

_vx ¼ Px;

_vy ¼ Py ;

_vz ¼ Pz;
_rxx ¼ k#þ k0wþ 2l
ovx
ox

þ 2l0 oPx

ox
;

_ryy ¼ k#þ k0wþ 2l
ovy
oy

þ 2l0 oPy

oy
;

_rzz ¼ k#þ k0wþ 2l
ovz
oz

þ 2l0 oPz

oz
;

ð22Þ
_rxy ¼ l
ovx
oy

�
þ ovy

ox

�
þ l0 oPx

oy

�
þ oPy

ox

�
;

_rxz ¼ l
ovx
oz

�
þ ovz

ox

�
þ l0 oPx

oz

�
þ oPz

ox

�
;

_ryz ¼ l
ovy
oz

�
þ ovz

oy

�
þ l0 oPy

oz

�
þ oPz

oy

�
:

Eqs. (19) and (22) constitute the velocity–stress formulation for the Kelvin–Voigt model. The model re-

quires three arrays for the particle-velocity components, six arrays for the stress-tensor components, and
four arrays for the material properties. On the other hand, the equation of motion based on a single Zener

model requires six additional arrays for the memory variables and two additional arrays for the material
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properties. The extra cost to avoid these memory requirements is the calculation of the nine additional

spatial derivatives corresponding to the acceleration components.
5. Algorithm

The numerical solution is obtained by using a fourth-order Runge–Kutta method as time-stepping

algorithm, the Chebyshev differential operator to compute the spatial derivatives along the vertical

direction, and the Fourier differential operator along the horizontal directions. The Fourier and

Chebyshev methods [6,7,12,20] consist of a spatial discretization and calculation of spatial derivatives

using the fast Fourier transform. The Fourier method is a collocation technique in which a continuous
function is approximated by a truncated series of trigonometric functions, wherein the spectral (ex-

pansion) coefficients are chosen such that the approximate solution coincides with the exact solution at

the discrete set of sampling or collocation points. The collocation points are defined by equidistant

sampling points. Since the expansion functions are periodic, the Fourier method is appropriate for

problems with periodic boundary conditions. In the Chebyshev method, the collocation points are the

roots of the Chebyshev polynomials. It is appropriate for simulating Neumann and Dirichlet boundary

conditions. The Fourier and Chebyshev methods are infinitely accurate up to the maximum wave-

number of the mesh, that corresponds to a spatial wavelength of two grid points (at maximum grid
spacing for the Chebyshev operator).

The conventional Chebyshev method has two major disadvantages. In the first place, the grid points

are restricted to the Gauss–Lobatto collocation points. This poses a limitation regarding the location of

the interfaces. Secondly, the clustering of grid points at the ends of the mesh restricts the time step of the

time integration scheme, which has to be of the order OðN�2Þ where N is the number of grid points.

Here, we use a mapping transformation for the vertical coordinate which circumvents the severe stability

condition of the integration method and distribute grid points in arbitrary locations. By stretching the

mesh, we increase the minimum grid spacing and are able to increase the time step of the Runge–Kutta
algorithm, thus reducing the computer time. For this purpose we have implemented the stretching

function and algorithm described by Kosloff and Tal-Ezer [26], who claim to obtain time steps of the

order OðN�1Þ. This has been verified by Renaut and Fr€ohlich [33] for the 2-D acoustic wave equation.

Furthermore, this transformation can be used for spatial grid adaptation [1,3,21], in the sense that the

collocation points can be redistributed and properly concentrated in regions with steep velocity gradients,

fine layering and complex interface geometries. Similar mapping transformations can be applied in the

horizontal directions, where the Fourier differential operator is used [19]. In particular, the time step

depends on the size of the first grid cell at the end of the mesh. In general, stability can be achieved with
the condition satisfied by the Fourier method. For the Runge–Kutta method the condition is [23]:

v dt=dz < 2:79, where v is the maximum wave velocity, dt is the time step and dz is the minimum grid

spacing.

The parabolic nature of the Kelvin–Voigt wave equation implies a lower limit for the allowed quality

factor. Below this limit, the propagation becomes essentially diffusive. This can be shown with a one-

dimensional analysis. In 1-D space, the particle velocity–stress equations (22) simplify to

_V � _v
_r

� �
¼ 0 q�1o=ox

ko=ox ðk0=qÞo2=o2x

� �
v
r

� �
� MV; ð23Þ

where v and r denote particle velocity and stress, respectively. Substituting the kernel V0 expðijx� ixtÞ into
Eq. (23) gives the dispersion equation
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ix ¼ 2

j
k0j
q

0
@ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

2

j2

q2
� 4k

q

s 1
A; ð24Þ

where x is a complex quantity and j is the real wavenumber. The field maintains its wave character when

the argument of the square root is negative, such that the frequency x has a real component. This condition

implies k0 < 2
ffiffiffiffiffiffi
kq

p
=j. Using Eq. (13), the condition on the quality factor is QP0 > j

ffiffiffiffiffiffiffiffiffiffiffi
k=x0

p
=x0 � jvp0ðPÞ=

x0. At the Nyquist wavenumber j ¼ p=dx, where dx is the grid spacing, this condition gives

QP0 >
vp0

2f0 dx
; ð25Þ

where f0 ¼ x0=ð2pÞ. If vp0 ¼ 2000 m/s, f0 ¼ 50 Hz and dx ¼ 5 m, we obtain QP0 ¼ 4.

Numerical dispersion is due to the time discretization, since the spatial differential operators have

spectral accuracy. The determination of the time step dt to obtain accurate solutions is particularly im-

portant in anelastic media, where physical dispersion should not be affected by numerical dispersion. It can

be shown that the fourth-order Runge–Kutta discretization of Eq. (23) implies [23]

Vnþ1 ¼
X4
m¼0

1

m!
ðM dtÞmVn; ð26Þ

where t ¼ n dt. Consider now that the frequency is real and the wavenumber k is complex. Substituting the

kernel expðikx� ixn dtÞ into Eq. (26) and taking the determinant of the system equal to zero gives

det ð1
"

� expðix dtÞÞIþ
X4
m¼1

1

m!
ðM dtÞm

#
¼ 0; ð27Þ

where I is the 2� 2 identity matrix, and M is a function of k. Solving for k, we define a complex velocity

resulting from the Runge–Kutta approximation as

�v ¼ x
k
: ð28Þ

The phase velocity is then given by

�vp ¼ Re
1

�v

� �� ��1

ð29Þ

and the quality factor is

�Q ¼ Re ð�v2Þ
Im ð�v2Þ : ð30Þ

The phase velocity and the quality factor depend on the time step dt which is determined to satisfy the

accuracy requirements by comparing Eqs. (29) and (30) to the exact phase velocity (7) and quality factor
(8). This approach has been used by Carcione and Quiroga-Goode [15] and Carcione et al. [13] to achieve

accuracy for frequency-dependent stress–strain relations which model wave propagation in realistic media.

Boundary conditions are implemented by using a boundary treatment based on characteristics variables

[10,24]. This method has been proposed by Bayliss et al. [4] to model free surface and non-reflecting

boundary conditions. The wave equation is decomposed into outgoing and incoming wave modes per-

pendicular to the free surface. The outgoing waves are determined by the solution inside the domain, while

the incoming waves are calculated from the boundary conditions. Let the vertical direction be parallel to
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the z-axis. At each time step, the wave field at the boundaries is updated according to the following

equations. At the upper boundary, the free-surface boundary equations are

vðnewÞx ¼ vðoldÞx � rðoldÞ
xx =ZS; ð31Þ
vðnewÞy ¼ vðoldÞy � rðoldÞ
yy =ZS; ð32Þ
vðnewÞz ¼ vðoldÞz � rðoldÞ
zz =ZP; ð33Þ
rðnewÞ
xx ¼ rðoldÞ

xx � k0
E0

rðoldÞ
zz ; ð34Þ
rðnewÞ
yy ¼ rðoldÞ

yy � k0
E0

rðoldÞ
zz ; ð35Þ
rðnewÞ
zz ¼ 0; ð36Þ
rðnewÞ
xz ¼ 0; ð37Þ
rðnewÞ
yz ¼ 0; ð38Þ

where ZP ¼ qvp0ðPÞ, ZS ¼ qvp0ðSÞ, k0 ¼ qðv2p0ðPÞ � 2v2p0ðSÞÞ and E0 ¼ qv2p0ðPÞ. We have considered the

characteristics at the central frequency of the source. That is, velocities and impedances are taken at x ¼ x0

(see Section 3).

At the bottom of the mesh, the non-reflecting boundary equations are

vðnewÞx ¼ 0:5ðvðoldÞx þ rðoldÞ
xz =ZSÞ; ð39Þ
vðnewÞy ¼ 0:5ðvðoldÞy þ rðoldÞ
yz =ZSÞ; ð40Þ
vðnewÞz ¼ 0:5ðvðoldÞz þ rðoldÞ
zz =ZPÞ; ð41Þ
rðnewÞ
xx ¼ rðoldÞ

xx þ k0
E0

ðrðnewÞ
zz � rðoldÞ

zz Þ; ð42Þ
rðnewÞ
yy ¼ rðoldÞ

yy þ k0
E0

ðrðnewÞ
zz � rðoldÞ

zz Þ; ð43Þ
rðnewÞ
zz ¼ 0:5ðrðoldÞ

zz þ ZPvðoldÞz Þ; ð44Þ
rðnewÞ
xz ¼ 0:5ðrðoldÞ

xz þ ZSvðoldÞx Þ; ð45Þ
rðnewÞ
yz ¼ 0:5ðrðoldÞ

yz þ ZSvðoldÞy Þ: ð46Þ
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In addition to the non-reflecting conditions, absorbing strips are used to further attenuate the wave field at

the bottom of the mesh [25]. This combined use of damping methods practically eliminates any wraparound

caused by the Fourier operator at the boundaries of the mesh.
6. Simulations

In order to illustrate the physics of wave propagation, let us consider a dissipative medium with q ¼ 2:3
g/cm3, vp0ðPÞ¼ 3.2 km/s and QP0 ¼ 10. These properties correspond to a reference frequency f0 ¼ 50 Hz.

Fig. 1 shows the P-wave phase velocity and dissipation factor (1/QP) versus frequency. The phase velocity

and dissipation factor increase with frequency and tend to infinity for infinite frequency. Note that at 50 Hz
the quality factor is equal to 10.

We first test the numerical solution against the analytical solution for Lamb�s problem in lossless media.

The analytical solution for a Poisson solid (Poisson ratio equal to 0.25), with source and receiver located at

the surface has been obtained by Pekeris [29] (see Appendix A). We consider a P-wave velocity of 2000 m/s.

The mesh has 81� 81� 81 grid points, with a horizontal grid spacing dx ¼ dy ¼ 5 m and a vertical size of

380 m (including the absorbing strip at the bottom of the mesh). The source is a Ricker-type wavelet located

at the surface and has a dominant frequency of 60 Hz. The receiver is located at the surface at 60 m from

the source. The Runge–Kutta algorithm requires a time step of 0.5 ms. Fig. 2 shows the Green�s function
for Lamb�s problem (a) and the comparison between the analytical solution (solid line) and numerical

solution (dotted line) (b). The dashed line is the viscoelastic numerical solution for QP0 ¼ 30 and QS0 ¼ 20.

The second test compares the numerical solution with the analytical solution for wave propagation in

lossy homogeneous media (see Appendix B). We consider the same medium of the previous test, a mesh

with 81� 81� 81 grid points, a horizontal grid spacing dx ¼ dy ¼ 5 m and a vertical size of 380 m. The

source position is 174 m below the free surface and has a dominant frequency of 50 Hz. Fig. 3 shows the

comparison for the vertical (a) and horizontal (b) particle velocities. The solid and dashed lines correspond

to the viscoelastic and elastic analytical solutions, and the dotted line is the viscoelastic numerical solution.
The two pulses are the P wave and the S wave. As can be seen, the agreement between numerical an

analytical solutions is excellent.

The following example has been given in [8], where the Zener model has been used to describe the

anelasticity and the modeling is two-dimensional. It represents a seismic experiment for environmental

applications [38]. Fig. 4 shows the model properties, source location and the line of receivers. The media are
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P ) (b) versus frequency. We have indicated the frequency at which the input

properties are defined (vp0ðPÞ ¼ 3:2 km and QP0 ¼ 10 at f0 ¼ 50 Hz).
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and the medium is a Poisson solid. The P, S and Rayleigh wave arrival times are indicated.
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previous test (Fig. 2).
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Poisson solids and the mesh are the same of the previous simulation. The source is a vertical force located at

2.5 m depth and has a dominant frequency of 50 Hz. Figs. 5 and 6 show the seismograms for the vx and vz
components, where (a) corresponds to the lossless case and (b) to the lossy case. In this case we have as-

sumed that the medium where the source is located (the incidence medium) has QP0 ¼ 30 and QS0 ¼ 20 (the
reference frequency is equal to 50 Hz). The labels indicate the different waves, with ‘‘i’’, ‘‘r’’ and ‘‘t’’ de-

noting incident, reflected and transmitted, and ‘‘P’’ and ‘‘R’’ denoting compressional and Rayleigh, re-

spectively. The incident Rayleigh wave (iR) arrives at the interface at 0.4 s and splits into a reflected

Rayleigh wave (iRrR) and a transmitted Rayleigh wave (iRtR). In Figs. 5(b) and 6(b), we can see the

attenuation of the Rayleigh wave (iR) in the incidence medium, while the transmitted Rayleigh wave (iRtR)

only decays by geometrical spreading in the transmission medium. The reflected Rayleigh wave (iRrR)

undergoes both, attenuation due to intrinsic dissipation and decay due to geometrical spreading.

Fig. 7 shows the model properties, source location and line of receivers for the simulation of Love waves.
The properties of the media and the mesh are the same of the previous simulation. The source is a



Fig. 4. Model, properties, and source and receiver locations to illustrate the propagation of Rayleigh waves. The media are Poisson

solids.
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Fig. 5. Seismograms of the vx component (see Fig. 4), where (a) corresponds to the lossless case and (b) to the lossy case. In this case,

the incidence medium is viscoelastic. The labels indicate the different waves, with ‘‘i’’, ‘‘r’’ and ‘‘t’’ denoting incident, reflected and

transmitted, and ‘‘P’’ and ‘‘R’’ denoting compressional and Rayleigh, respectively.

292 J.M. Carcione et al. / Journal of Computational Physics 196 (2004) 282–297
horizontal force located at 2.5 m depth and has a dominant frequency of 50 Hz. This source excites only

Love surface waves in the receivers. A requirement is that the vertical section below the line of receivers be a

plane of mirror symmetry. Fig. 8 compares vy-component seismograms for the lossless (a) and lossy (b)

cases. The dissipation of the train of dispersed Love waves can be observed.

Although the previous simulations use Poisson solids, the modeling is not restricted to this type of

medium. As shown by Carcione [8] in the two-dimensional case, the algorithm can handle strong contrasts
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Fig. 6. Seismograms of the vz component (see Fig. 4), where (a) corresponds to the lossless case and (b) to the lossy case. In this case,

the incidence medium is viscoelastic. The labels indicate the different waves, with ‘‘i’’, ‘‘r’’ and ‘‘t’’ denoting incident, reflected and

transmitted, and ‘‘P’’ and ‘‘R’’ denoting compressional and Rayleigh, respectively.

Fig. 7. Model, properties, and source and receiver locations to illustrate the propagation of Love waves. The media are Poisson solids.
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in Poisson ratio (see also [31]). We have obtained stable results when computing the seismograms corre-

sponding to Fig. 4 by replacing the low-velocity medium with a fluid, whose Poisson�s ratio is 0.5 (we have

considered vp0(S)¼ 0.1 m/s). Moreover, note that the previous simulations may apply to any frequency

range if we choose (scale) the source parameters, mesh attributes and reference frequency accordingly.

Using the same mesh of the previous simulations, an example of ultrasonic propagation would require a

grid spacing of 0.5 mm, a vertical size of 3.8 cm, a source central frequency of 500 kHz and a reference

frequency of 500 kHz. Similarly, parameters for earthquake seismology can be a grid spacing of 1.3 km, a



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e 
(s

)

Distance (m)

Vz-component(a)

 0 100 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e 
(s

)

Distance (m)

Vz-component(b)

 0 100 200
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layer is viscoelastic.
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vertical size of 100 km, a source central frequency of 0.2 Hz and a reference frequency of 0.2 kHz. Unlike

the differences in the distance and time scales, the seismograms corresponding to these applications will be

similar to those shown in Figs. 5, 6 and 8 if the same density, velocity and quality-factor values are used.
7. Conclusions

We have developed a numerical approach for wave simulation in anelastic media in the presence of free

surface. The modeling simulates 3-D waves by using the Fourier and Chebyshev methods to compute the

spatial derivatives along the horizontal and vertical directions, respectively. The basic numerical algorithm

has been used to model wave propagation in lossless media [37], for which the time step restriction is easier
to determine. Here we adapt the algorithm to the lossy case (the boundary treatment mainly), and show

how to determine the time step by analyzing the phase velocity and attenuation factor as a function of

frequency. The stress–strain relation is based on the Kelvin–Voigt mechanical model. We have simulated

Rayleigh and Love waves with intrinsic energy loss and showed that the difference with the lossless case are

significant. The examples illustrate experiments for environmental applications, with realistic values of the

quality factors and source dominant frequency in agreement with propagation in soils [38]. Moreover, the

modeling is relevant to a number of applications, such as ultrasonic NDT testing, earthquake seismology

and exploration seismic technology. The formulation based on one Kelvin–Voigt element models implies
that the quality factor is linear as a function of frequency. In order to model a more general behaviour and

match prescribed attenuation curves, a series connection of elements can be used [32]. The implementation

of this general constitutive equation in 3-D wave modeling will be the subject of a future publication.

Moreover, the modeling can easily be adapted to model topographic features and curved interfaces by using

3-D coordinate transformations [16].
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Appendix A. Analytical solution for Lamb’s problem

Pekeris [29] obtained a closed-form solution for the vertical surface displacement in response to a vertical

point surface force of strength F0, with a Heaviside function as time history. This solution has also been

studied by Mooney [28]. Let us define the dimensionless time s ¼ ðvp0ðSÞ=rÞt, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
,

d ¼ vp0ðPÞ=vp0ðSÞ, and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
3

pp
. The solution for a Poisson solid (vp0ðPÞ ¼

ffiffiffi
3

p
vp0ðSÞ) is given by

GðsÞ ¼ 0; s < 1=d;

rGðsÞ ¼

� p
96

6�
ffiffiffiffiffiffiffiffiffiffi
3
ffiffi
3

p
þ5

c2�s2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffi
3

p
�5

s2�
ffiffi
3

p
=4�3=4

q
�

ffiffiffiffiffiffiffiffiffiffi
3

s2�1=4

qn o
; 1=d < s < 1;

� p
48

6�
ffiffiffiffiffiffiffiffiffiffi
3
ffiffi
3

p
þ5

c2�s2

qn o
; 1 < s < c;

�p=8; s > c:

8>>><
>>>:

ðA:1Þ

The response to a Dirac�s function (i.e., the Green�s function) is the time derivative of (A.1). Another time

differentiation is required to obtain the particle velocity. Then, the solution is given by vz ¼ €G � f ¼G � €f ,
where f ðtÞ is the time history of the source and � denotes time convolution. f is a Ricker wavelet [12] and €f
can be obtained analytically, while the convolution is performed by discretization of G and €f and using a

numerical integration algorithm.
Appendix B. Analytical solution for unbounded homogeneous viscoelastic media

The solution of the displacement field generated by an impulsive point force in a 3-D elastic medium is

given by Pilant [30]. Define the source–receiver distance as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; ðB:1Þ

and

sin h ¼ z
r
; cos h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
r

: ðB:2Þ

For a force acting in the positive z-direction, the radial and tangential components of the Green�s function
are

ð4pqr cos�1 hÞGrðr; h;xÞ ¼
1

v2p0ðPÞ

 
� 2i

vp0ðPÞxr
� 2

x2r2

!
exp½ixr=vp0ðPÞ�

þ 2i

vp0ðSÞxr

�
þ 2

x2r2

�
exp½ixr=vp0ðSÞ� ðB:3Þ

and

ð4pqr sin�1 hÞGhðr; h;xÞ ¼
 

� 1

v2p0ðSÞ
þ i

vp0ðSÞxr
þ 1

x2r2

!
exp½ixr=vp0ðSÞ�

� i

vp0ðPÞxr

�
þ 1

x2r2

�
exp½ixr=vp0ðPÞ�; ðB:4Þ
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respectively. The Cartesian horizontal and vertical components are then given by

Gx ¼ Gy ¼ sin hGr þ cos hGh ðB:5Þ

and

Gz ¼ cos hGr � sin hGh; ðB:6Þ

respectively. Using the correspondence principle [5,12], we replace the elastic wave velocities in (B.3) and

(B.4) by the viscoelastic wave velocities vðPÞ and vðSÞ defined in Eq. (9). The 3-D viscoelastic Green�s
function components can then be expressed as

Gvðz;xÞ ¼ G½z;x; vðPÞ; vðSÞ�: ðB:7Þ

Multiplication with the frequency-domain Fourier transform of the time derivative of the source

time function and a numerical inversion by the discrete Fourier transform yield the desired time-domain

solution.
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